Regularization and preconditioning of KKT systems arising in nonnegative least-squares problems
نویسندگان
چکیده
A regularized Newton-like method for solving nonnegative least-squares problems is proposed and analysed in this paper. A preconditioner for KKT systems arising in the method is introduced and spectral properties of the preconditioned matrix are analysed. A bound on the condition number of the preconditioned matrix is provided. The bound does not depend on the interior-point scaling matrix. Preliminary computational results confirm the effectiveness of the preconditioner and fast convergence of the iterative method established by the analysis performed in this paper.
منابع مشابه
NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملJOHN COURTNEY HAWS . Preconditioning KKT Systems . ( Under the direction of
JOHN COURTNEY HAWS. Preconditioning KKT Systems. (Under the direction of Professor Carl D. Meyer.) This research presents new preconditioners for linear systems. We proceed from the most general case to the very specific problem area of sparse optimal control. In the first most general approach, we assume only that the coefficient matrix is nonsingular. We target highly indefinite, nonsymmetric...
متن کاملCholesky - based Methods for Sparse Least Squares : The Benefits of Regularization ∗
We study the use of black-box LDL factorizations for solving the augmented systems (KKT systems) associated with least-squares problems and barrier methods for linear programming (LP). With judicious regularization parameters, stability can be achieved for arbitrary data and arbitrary permutations of the KKT matrix. This offers improved efficiency compared to implementations based on “pure norm...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملFast Nonnegative Least Squares Through Flexible Krylov Subspaces
Constrained least squares problems arise in a variety of applications, and many iterative methods are already available to compute their solutions. This paper proposes a new efficient approach to solve nonnegative linear least squares problems. The associated KKT conditions are leveraged to form an adaptively preconditioned linear system, which is then solved by a flexible Krylov subspace metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009